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Abstract

A model is proposed to describe the cross-'ow )ltration of colloidal particles and molecules. This two-dimensional model depicts
both concentration polarization and gel or cake formation in a tubular )ltration device. A description of transport phenomena in a
concentrated colloidal suspension is the core of the model. Surface and hydrodynamic interactions are used to predict the variation
of the osmotic pressure and di5usion coe6cient with the volume fraction of the suspension. The mathematical development
leads to an analytical equation used for calculating the stationary permeate 'ux from integral calculations. The two-dimensional
concentration pro)le along the membrane, together with the corresponding permeate 'ux is obtained. This paper illustrates how
mass transfer equations coupled with a realistic description of the 'uid can describe both concentration polarization and gel or
cake formation. The paper includes a discussion on the di5erences between limiting and critical 'uxes, and between particles and
macromolecular cross-'ow )ltrations. ? 2002 Published by Elsevier Science Ltd.
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1. Introduction

Cross-'ow ultra)ltration is now used in a wide range of
industrial applications (in the food industry, biotechnol-
ogy, the pharmaceutical industry, water and waste-water
treatment). The nominal molecular-weight cut-o5 of ul-
tra)ltration membranes (1–300 kDa) makes them appro-
priate for processing colloidal suspensions (particles or
macromolecules whose size is less than 1 �m). Such a
process is mainly limited by the accumulation of matter
on the )lter that includes concentration polarization and
membrane fouling (formation of a gel layer or a deposit).
With this in mind, the study of membrane fouling by col-
loidal dispersions is of considerable interest for develop-
ing the process. Here, modeling opens up the possibility
of better understanding mechanisms that reduce process
e6ciency, of optimizing the way the )ltration should be
operated and of creating expert systems for the design
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of membrane modules and membrane plants processing
colloidal suspensions.

The complexity of colloidal matter comes from the
presence of surface interaction between the suspended
materials. Over the past two decades, experimental ob-
servations have revealed the role that colloidal interac-
tions can play in the )ltration of colloidal suspensions
(Cohen & Probstein, 1986; McDonogh, Fane, & Fell,
1989). Fifteen years ago, the existing models were in-
capable of quantitatively predicting permeate 'ux and
of qualitatively representing the e5ect of a suspension’s
physico–chemical properties, such as ionic strength
or pH, on the permeate 'ux. What was described by
Cohen and Probstein (1986) as “a colloid 'ux paradox”
has recently been underlined by the experimental )nding
of a critical 'ux for colloids. This critical phenomenon
demonstrates the speci)city of the )ltration of colloidal
suspensions and raises interest for modeling in this area:
just a small variation in operating conditions (particle
size or surface charge, pH, ionic strength, concentra-
tion, pressure, cross-'ow velocity, permeation rate, etc.)
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induces important changes in the working point and
so in the way the process has to be operated. As de-
tailed in the next section, various models accounting
for colloidal interaction have been recently developed
to describe colloid )ltration. However, the model for a
limiting phenomenon in ultra)ltration is often selected
according to the application (concentration polarization
and gel layer for macromolecules, deposit for particles)
and the models di5er in their theoretical treatment. But
colloidal suspensions often exhibit the behavior both
of particles and of macromolecules, thus leading to a
delicate choice as to the way modeling should be de-
veloped. Furthermore, detailed analysis of the e5ect of
colloidal interaction on )ltration is often carried out in
a one-dimensional system (i.e. normal to the membrane
surface), whereas the design of membrane modules and
the de)nition of appropriate operating conditions has to
take account of the development of the mass-transfer
boundary layer. For the )ltration of colloidal suspen-
sions, this cannot be done using the standard calculation
based on purely di5usive mechanisms, as was pointed out
by JKonsson and JKonsson (1996). However, these authors
suggested to determine the boundary layer thickness us-
ing an experimental technique; we shall show below how
this thickness can be estimated from a two-dimensional
model.

In the present work, we have investigated the possibil-
ity of introducing particle–particle colloidal interactions
into a two-dimensional analysis of transport phenomena
along the length of a )ltration device. This allows the
speci)city of colloid )ltration to be accounted for. Also,
a phase transition, related to the balance between disper-
sive and attractive forces, accounts for the passage from
the liquid state to the gelled phase. By integrating such
phenomena into the description of membrane fouling,
the model can depict mechanisms of concentration po-
larization, gel formation and particle deposition, within a
single approach. Important suggestions as to the way
)ltration should be operated when processing colloidal
suspensions are underlined.

2. Background

Solute accumulation is the antagonistic phenomenon
of the )ltration process and as such can only be partially
reduced (for example, by changing the hydrodynamics)
but never totally eliminated. Solute accumulation is a
self-regulating phenomenon as it causes a drop in per-
meate 'ux, thus inducing a simultaneous decrease in
the accumulation rate and so on. Consequently, when
operating at a )xed trans-membrane pressure di5er-
ence (TMP) and feed concentration, surface fouling
leads to a stationary or quasi-stationary permeate 'ux.
This implies that two kinds of transfer are involved in
fouling:

• solvent transfer (permeate 'ux) through the fouling
layer, when present, and through the membrane,

• solute transfer (mass 'ux) to the membrane or to the
fouling layer (if fouling has already occurred).

The solute transfer di5ers from the transfer directly in-
duced by solvent convection because of the membrane’s
retention properties; this di5erence causes the solute ac-
cumulation. Physically, these two 'uxes are intimately
linked together and therefore have to be treated simul-
taneously in the theory: the solvent transfer is depen-
dent on solute transfer as solute accumulation changes
the osmotic pressure di5erence and, when relevant, the
hydraulic resistance of the fouling layer, while the mass
transfer depends on solvent transfer as permeate 'ux is at
the origin of mass 'ux. This study is restricted to surface
solute accumulation, namely: concentration polarization,
gel formation or particle deposition mechanisms. These
phenomena are considered at steady state.

2.1. Solvent transfer through the membrane and the
fouling layer

The starting point for describing solvent transfer in
cake-)ltration or osmotic-pressure models is the ini-
tial driving force: the transmembrane pressure. The
cake-)ltration model assumes that a layer of deposited
matter is formed on the membrane, so the frictional
drag due to permeation through these immobile particles
leads to an additional hydraulic resistance that corrects
the original Darcy law. The osmotic-pressure model
considers that as there is a great concentration di5erence
between the two sides of the membrane, a thermody-
namic force arises in opposition to the TMP; this is equal
to the transmembrane osmotic pressure. Combining both
mechanisms, for a given transmembrane pressure LP
and a hydraulic resistance of the clean membrane Rm,
the permeate 'ux Vw is given by

Vw =
LP − L�
�(Rm + Rc)

; (1)

where the two unknown parameters are the hydraulic re-
sistance of the cake Rc and the transmembrane osmotic
pressure di5erence L� across the cake and the mem-
brane whose determination can only come from an accu-
rate description of mass transfer near the membrane.

2.2. Mass transfer to the membrane

The convection-di5usion equation is widely used to
describe the stationary permeate 'ux during )ltration of
small-size solutes at low concentration. For a totally re-
tentive membrane, solute 'ux to the membrane is zero at
steady state

−Vw�−D
@�
@z

=0: (2)
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After integration across the mass-transfer bound-
ary layer, assuming a constant di5usion coe6cient,
the following relationship is found between the per-
meate 'ux and the membrane-to-bulk concentration
ratio:

Vw =
D
�

ln
(
�w

�b

)
: (3)

This equation links the wall volume fraction �w to the
local permeate 'ux Vw. To explain the limiting 'ux ob-
served experimentally, Michaels (1968) assumed that the
wall concentration cannot exceed a limiting concentra-
tion named the gel concentration, �g (�w is replaced by
�g in Eq. (3)). This approach was corroborated by ex-
perimental observation of deposits formed on the mem-
brane surface and sometimes recovered after )ltration.
The value �g has to be determined from experimental
data, but even if this “gel concentration” is considered to
be known, this model for concentration polarization does
not satisfactorily predict permeate 'ux for concentrated
solutions and=or for interacting solutes, which colloidal
suspensions are by de)nition.

Some recent work (Bhattacharjee, Kim, & Elimelech,
1999) includes the e5ects of concentrated and interacting
solutes in the convection-di5usion equation (Eq. (2)) via
a structure factor for interacting particles. This model
allows a realistic description of the behavior of concen-
trated solutions near a membrane, but does not include
the transition from concentration polarization to gel or
deposit formation. On the other hand, other authors
(Benkhala, Ould-Ris, Ja5rin, & Si-Hassen, 1995; Har-
mant & Aimar, 1996) give experimental evidence of a
TMP beyond which an irreversible deposit is formed
by a stable colloid. For given properties of the colloidal
dispersion, the deposit appears at a particular permeation
'ux named the “critical” 'ux. Deposition is clearly a
very important factor in membrane fouling. This critical
'ux has been shown (Bacchin, Aimar, & Sanchez, 1995;
Harmant & Aimar, 1996) to arise from a balance between
the two types of forces acting on a suspended particle
near the solid interface (the membrane or the cake):

• the repulsive force due to surface interaction between
the colloid and the solid interface driving the particle
away from the surface,

• the drag force due to permeate 'ux drawing the particle
towards the surface.

Below the critical 'ux, the drag force is weaker than
the repulsive interaction and no fouling or phase change
should occur; above this value, the drag is strong enough
to lead to fouling. Some recent publications (Bacchin
et al., 1995; Harmant & Aimar, 1996; Bowen & Jenner,
1995) stress the importance of colloidal interaction in
determining the critical 'ux but also underline the need

to account for the e5ect of concentration on transport
properties.

Now Petsev, Starov, and Ivanov (1993) and JKonsson
and JKonsson (1996) have suggested that the properties
of concentrated colloidal dispersions can be described by
an expression for the osmotic pressure that takes into ac-
count contributions from the entropic e5ect and colloidal
interactions. These authors clearly show that with rising
concentration the osmotic pressure theoretically passes
through a maximum and that this maximum corresponds
to a transition from a dispersed to a solid state. In the
case of membrane )ltration, this transition may be used
in the description of deposit formation, but it has not yet
been linked to a critical 'ux. The main assumption in the
model developed by JKonsson and JKonsson (1996) is that
the 'ow occurs through a purely di5usive boundary layer.
However, the thickness of the boundary layer can only be
either roughly estimated from a correlation based on just
di5usive mechanisms (a questionable approximation) or
else adjusted from experiments.

In the present paper, a model is proposed that in-
troduces colloidal interaction forces into the traditional
convective-di5usive mass transfer equation through an
interaction term in the osmotic pressure of the suspen-
sion. This model is intended to account for the non-ideal
behavior of the concentrated suspension or solution in
the boundary layer. It predicts realistic properties (di5u-
sion, mobility) of a concentrated colloidal dispersion. In
contrast to some previous models, this approach consid-
ers mass transfer in two dimensions, thus allowing the
growth of concentration polarization, gel layer and de-
posit along the channel to be described.

3. Theoretical development

We consider the cross-'ow )ltration of a colloidal
dispersion in a tubular con)guration at steady state
(Fig. 1). This system is assumed to have rotational sym-
metry, thus reducing the three dimensions of the tubular
geometry to the two dimensions r and z. The hydro-
dynamics in this system will be treated as the sum of
tangential shear 'ow and radial 'ow. This approximation

Fig. 1. Major parameters and co-ordinates in cross-'ow )ltration in
a cylindrical channel.
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was shown by Berman (1953) to be acceptable in a
thin layer near the permeable wall, when he solved
the Navier–Stokes equation in a porous-walled chan-
nel with a uniform permeation rate. In the present
paper, we consider that the hydrodynamics in the
axial direction is not a5ected by the growth of the
cake deposit and that the colloidal matter is totally
retained by the membrane, i.e. the pore size is too
small to allow particles through. This limits our in-
vestigation to surface fouling, including concentration
polarization and particle deposition, and excludes pore
blocking. Furthermore, we assume the additivity of hy-
draulic resistance thus limiting the model to deposits
with thicknesses greater than several particle diam-
eters. For mass transfer modeling, we consider only
interactions between particles: the interaction between
the membrane surface and the colloid is not accounted
for. This corresponds to neglecting the transient state
of membrane=colloid interaction and considering only
a balance between suspended and deposited colloid at
steady state or considering that the membrane has similar
surface properties to those of the particles in suspen-
sion. On the other hand, 'uid mechanical forces such
as shear-induced di5usion Zydney and Colton (1986)
and lateral migration Altena and Belfort (1984) are
not taken into account as they are negligible for parti-
cles less than 1 �m in size. The colloid is composed of
monodisperse, incompressible and spherical particles or
macromolecules in interaction with each other.

3.1. Physical representation of the concentrated
colloidal dispersion

For the purpose of our work, the in'uence of the pres-
ence of particles interacting with each other on the rate of
water transport at steady state is theoretically accounted
for via the osmotic pressure and its variation with con-
centration. This is then used to derive the di5usivity of
the suspended medium that determines the rate of so-
lute transport. We hence adopt the method proposed by
Petsev et al. (1993).

The di5usion coe6cient is derived from the Einstein
(1956) equation, which links the di5usion coe6cient to
the derivative of osmotic pressure with respect to volume
fraction, together with Vp the volume of the suspended
particle and its mobility m:

D(�)=m(�)Vp
d�
d�

: (4)

It should be noted that the di5usion coe6cient de)ned
here is not a classical self-di5usion coe6cient but is gen-
erally termed a gradient-di5usion or collective-di5usion
coe6cient as it describes the macroscopic 'ux of par-
ticles in the presence of a gradient in the volume frac-
tion of colloidal matter (Russel, Saville, & Schowalter,
1989).

Assuming that the mobility m(�) is the reciprocal of
the friction factor de)ned by the Stokes law, as corrected
by Happel (1958) to account for the e5ect of concentra-
tion on the drag force, the following expression for the
di5usion coe6cient is obtained:

D(�)=
Vp

6��aH (�)
d�
d�

; (5)

where a is the particle radius and � the volume fraction.
The Happel function H (�) is given by

H (�)=
6 + 4�5=3

6 − 9�1=3 + 9�5=3 − 6�2 : (6)

The osmotic pressure is estimated by adding together
the contributions of entropy, van der Waals interactions
and electrostatic interactions as detailed in the appendix.
It should be noted that the osmotic pressure here is not the
total osmotic pressure of the suspension, but the osmotic
pressure that originates from the species of the suspension
retained by the membrane.

�(�)=�ent(�) + �vdw(�) + �ele(�): (7)

The magnitude of these di5erent contributions varies
with the volume fraction of the suspension, with the par-
ticle size and with physico–chemical parameters. An ex-
ample of the osmotic pressure calculated for suspensions
spheres of 5 and 100 nm in radius is shown in Figs. 2
and 3 with each contribution detailed. Other data for cal-
culating osmotic pressure are given in Table 1 (second
column). At low volume fraction, the osmotic pressure is
dominated by the entropic e5ect for small spheres (Fig.
2) whereas for larger ones (Fig. 3), the entropic contribu-
tion is negligible and osmotic pressure only results from
the electrostatic interaction e5ect. In both cases for vol-
ume fractions higher than a critical value, van der Waals
surface interaction becomes predominant and causes
a considerable drop in osmotic pressure. As already
mentioned by Petsev et al. (1993), there thus exists a
maximum in theoretical osmotic pressure at a critical
concentration denoted �c. Beyond this critical concen-
tration, attractive interactions lead to an unstable sus-
pension in which the coagulation process can be seen
as the result of a “negative di5usion” from dilute (liq-
uid phase) to aggregated (solid phase) suspension. In
this work, we consider this critical concentration as the
value for the liquid–solid transition, i.e. the transition
from concentration polarization to fouling regime. We
shall see later in the paper that it probably corresponds
to the limiting wall concentration that Michaels (1968)
called the “gel” concentration. The dispersion is con-
sidered thermodynamically stable towards coagulation
at concentrations below �c, even if a slow coagulation
should be expected in real systems at concentrations
just below �c, as pointed out by JKonsson and JKonsson
(1996).
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Fig. 2. Variation of the total osmotic pressure with the volume fraction. (a= 5 nm, other data as in Table 1).

Fig. 3. Variation of the total osmotic pressure with the volume fraction. (a= 100 nm, other data as in Table 1).

Table 1
Common data set used for simulations

Fiber Suspended matter
Radius R= 3 mm Radius a= 5–1000 nm
Length L= 1:2 m ZReta potential �= 30 mV
Permeability Lp = 10−9 m=(Pa s) Hamaker constant A= 10−20 J

Inlet condition Suspension medium
Mean velocity 1 m=s Ionic strength I = 10−5 M
Pressure P0 = 100 − 0 kPa Ion valence z = 1
Volumic fraction �= 10−3 Viscosity �b = 10−3 kg=(m s)

Experimentally, the transition between liquid and solid
phases appears in a graph of osmotic pressure versus vol-
ume fraction as a discontinuity zone indicating the co-
existence of both 'uid and solid (Russel et al., 1989,

p. 342). The transition can also be observed by studying
the reversibility of osmotic pressure measurements us-
ing the osmotic stress method (Bonnet-Gonnet, Belloni,
& Cabane, 1994). It should be noted that the decline in
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osmotic pressure at volume fractions above the 'uid=solid
transition (dashed line in Figs. 2 and 3) is not physical
and cannot be observed experimentally. In fact, at vol-
ume fractions above the maximum, a phase transition oc-
curs (often called spinodal decomposition) and a solid
is formed: the contact forces between solid surfaces in-
duce an additional resistance to the compression that in-
creases with volume fraction, however the latter com-
pression is irreversible whereas osmotic pressure remains
reversible. In this work, we use the osmotic pressure only
to describe properties of the 'uid phase and the maxi-
mum in osmotic pressure corresponds to the solid='uid
transition.

This physical description allows the di5usive prop-
erties of concentrated interacting particles to be seen
as the combination of an entropic e5ect and colloidal
interaction. It should be noted that repulsive colloidal
interaction plays a role at intermediate volume fractions
by enhancing the gradient di5usion coe6cient (as shown
in Fig. 3 by an increase in osmotic pressure), whereas
for high volume fraction attractive interaction reduces
di5usivity leading to coagulation beyond �c. This kind
of behavior is qualitatively in agreement with the way
that experimental measurements of the osmotic pressure
vary with the particle size and the physico–chemical
properties of the suspension, such as ionic strength and
zeta potential. So even if no fully predictive theoretical
model for concentrated colloidal dispersions exists, the
approximate method of simply adding colloidal inter-
action to the entropic e5ect provides a good qualitative
description of the behavior of a large range of colloidal
systems.

3.2. Hydrodynamics and mass transfer

Hydrodynamics and mass transfer in the )ltration de-
vice (Fig. 1) are described from volume (Eq. (8)) and
mass (Eq. (15)) balances in the axial x direction, com-
bined with a convection-di5usion mass balance in the
radial z direction (Eq. (13)), including the physical
representation of concentrated suspensions as discussed
in the previous section.

From a volume balance accounting for permeation, a
di5erential equation is obtained for the axial variation in
the total 'ow rate

dQ
dx

= − 2�RVw: (8)

The axial pressure gradient along the membrane chan-
nel is determined by the friction factor for laminar or
turbulent 'ow:

dP
dx

=P′(x)= − f
Q2�
�2R5 : (9)

The hydrodynamic regime in the membrane channel
depends on the Reynolds number

Re=
2Q�
�R�b

: (10)

In the laminar regime (Re¡ 2100), the friction factor
is given by the Poiseuille relationship:

f=16=Re; (11)

whereas for turbulent 'ow, a common approximation for
the friction factor is given by the Blasius correlation

f=0:0791=Re1=4: (12)

Mass transfer in the radial z direction, i.e. perpen-
dicular to the membrane surface, is described by a
convection-di5usion equation including the e5ect of col-
loidal interaction on the di5erent properties as a function
of volume fraction, as developed in the previous section.
For a colloid totally retained by the membrane, we have

−Vw�−D(�)
@�
@z

=0: (13)

As the polarization layer is thin compared with the
membrane channel radius, this equation is valid through-
out the polarization layer.

Separation of variables in Eq. (13) allows the coordi-
nate z to be replaced by the concentration �

dz= − 1
Vw

D(�)
�

d�: (14)

At steady state, the 'ux of suspended matter along the
channel is constant and is equal to the mass 'ux entering
the inlet section of the channel; the left-hand integral
in Eq. (15) can be represented as the sum of the mass
'ux in the bulk ()rst term) and that in the boundary
layer thickness � where the concentration polarization is
present∫ R

0
ru� dr =�b

Q
2�

+ R
∫ �

0
u(�− �b) dz=

Q0�b

2�
:

(15)

We adopt the assumption already made by Davis and
Sherwood (1990) and Song and Elimelech (1995) that
there is no variation in bulk concentration in the axial
direction of the membrane tube. This assumption is jus-
ti)ed by the fact that, in the calculations performed in
this paper, the permeate 'ow rate is always ¡ 1% of the
bulk 'ow rate Q and the very low di5usivities of col-
loidal particles imply that concentration variations only
appear within the very thin polarisation layer.

Eq. (15) can then be rewritten as

Q=Q0 − 2�R
�b

∫ �

0
u(�− �b) dz: (16)
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The cross-'ow velocity u can be evaluated by assum-
ing that the shear stress throughout the boundary layer
thickness is equal to the wall shear stress RP′(x)=2

u(z)= − R
2
P′(x)

∫ z

0

dz
�(�)

: (17)

In this work, we have chosen to represent the variation
of viscosity with volume fraction by the Eilers–Chong
formula (Kissa, 1999):

�(�)
�b

=
[
1 +

1:25�
1 − �=�cp

]2

; (18)

where �b is the bulk viscosity and �cp is the volume
fraction for close packing as de)ned in the appendix.
In fact �cp is likely to be a function of the physico–
chemical properties of the system, although its value is
much greater than the critical volume fraction that repre-
sents the maximum concentration reached in our calcu-
lations. Since this work focused on the e5ect of particle
interactions on di5usivity and osmotic pressure, we as-
sumed �cp to be a constant: a more detailed treatment of
this point is left to future work.

By substituting Eqs. (14) and (17) in Eq. (16), we
obtain an equation depicting the mass balance with
concentration-dependent di5usion and viscosity in the
mass-transfer boundary layer

Q=Q0 +
�R2P′(x)
�bV 2

w

∫ �b

�w

D(�)
∫ �

�w

D(�′)
�′�(�′)

d�′ d�:

(19)

Using Eq. (9) for the pressure derivative along the
membrane and simplifying by introducing a function G,
Eq. (19) can )nally be written as

Vw =
Q
R

√
�f

�b�R
G(�b; �w)
Q0 −Q

(20)

with G(�b; �w)=
∫ �w

�b

D(�)
∫ �w

�

D(�′)
�′�(�′)

d�′ d�:

(21)

From considerations of hydrodynamics and mass trans-
fer in the membrane channel, Eq. (20) relates the perme-
ate 'ux to the volume concentration at the wall. Another
relationship linking these two parameters would allow
the system to be completely determined. This is achieved
here by using the osmotic pressure model to describe the
permeate 'ux through the membrane (cf. Eq. (1))

Vw(x)=
P(x) −�(�w)

�0Rm
: (22)

Eqs. (20) and (22) can be solved simultaneously to
give �w and Vw. This non-linear algebraic system can be
combined with the ordinary di5erential Eqs. (8) and (9)
so that for given values of pressure P and 'ow rate Q, the
gradients P′ and Q′ are obtained. This set of )rst-order

Fig. 4. Calculation procedure with a criterion for distinguishing cake
formation from concentration polarization.

ordinary di5erential equations can then be solved by a
numerical method such as the Runge–Kutta technique.

3.3. Critical volume fraction and deposition mechanism

If �w, the volume fraction at the wall is less than the
critical volume fraction �c, then only concentration po-
larization is present, with no colloidal deposition on the
membrane and the calculation technique outlined above
is satisfactory. However, if the calculated �w is greater
than the critical volume fraction, this implies physically
that the high concentration at the membrane has caused a
transition of the suspension from a liquid to a solid state,
leading to particle deposition. In this case, the permeation
equation must include a cake hydraulic resistance Rc for
this deposit (from Eq. (1)):

Vw(x)=
P(x) −�(�c)
�0(Rm + Rc)

: (23)

However, Rc is an unknown value. To solve this prob-
lem, we assume that the local cake thickness will increase
until a value of Rc is obtained such that Eq. (23) will
be in agreement with a version of Eqs. (20) and (21) in
which �w is set equal to �c.

Physically, this means that the permeation rate will
gradually decline from the value which induced the wall
accumulation higher than�c until it reaches a value where
the di5usion-convection equilibrium at the wall (i.e. at
the cake surface) will set �w equal to �c. This procedure
of calculation is illustrated in Fig. 4. Finally, Eq. (23) can
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Fig. 5. 2D concentration pro)le for 100 nm suspension and TMP = 15 kPa (others conditions as in Table 1). The corresponding permeate 'ux
pro)le is presented in Fig. 9.

be used to calculate the ratio Rc=Rm. The thickness of the
cake cannot be calculated, unless its speci)c hydraulic
resistance and density are known, but we shall assume
that the cake thickness is negligible when compared to
the hydraulic radius of the channel. This assumes that
deposit growth does not disturb the axial 'ow.

4. Discussion

Simulations using the model developed in the previ-
ous section have been performed for various operating
conditions and physico–chemical properties of the media.
To illustrate the capability of the model to describe both
concentration polarization and particle deposition, simu-
lation results are )rst presented for two di5erent kinds of
colloidal material: small particles (5 nm in radius) which
could represent a macromolecule such as a big protein
and larger ones (100 nm) like latex particles, for exam-
ple. The common data set for these simulations is listed
in Table 1. These data correspond to colloid ultra)ltration
with turbulent cross-'ow conditions in a tubular device
(Re=6000). Results of the simulation are the 2D con-
centration pro)le and the local permeate 'ux along the
membrane as illustrated in Fig. 5. It shows clearly how
the concentration polarization develops at the membrane
surface along x, the length of the membrane, in a bound-
ary layer whose thickness grows characteristically with
x1=3. Note that wall concentration reaches a value of � ≈
0:5 at a certain distance from the inlet which will be seen

later on in the paper as associated with the formation of
irreversible deposit.

4.1. Overall analysis of the simulation

In Figs. 6 and 7, the average 'ux J through the mem-
brane (found by integrating the local 'ux Vw) for these
two suspensions is plotted versus TMP, with other pa-
rameter values as in Table 1. Both of these graphs show
the typical ultra)ltration behavior, with an initial increase
in 'ux with TMP and at higher TMP, a leveling-o5 to
a quasi-plateau in 'ux commonly called the “limiting”
'ux. This “experimenter’s view” of the system shows
two graphs very similar in shape, but there is an impor-
tant theoretical di5erence between them. For the larger
colloid (Fig. 7), the average 'ux equals the pure sol-
vent 'ux right until it reaches the limiting 'ux. For the
macromolecules (Fig. 6), the 'ux is soon well below the
water 'ux and reaches the limiting 'ux more gradually.
This di5erence can be explained by analyzing the way
in which the volume fraction at the interface �w and the
cake resistance Rc (both at the outlet of the membrane
channel) vary with TMP, as shown in Figs. 6b and 7b.

In the case of macromolecular particles, the increase in
concentration polarization with increasing TMP explains
the loss in permeate 'ux without cake formation: the os-
motic pressure reaches values comparable with the TMP.
As indicated earlier, concentration polarization alone is
su6cient to explain the strong limitation in 'ux. It has
to be noted however that for high enough TMP (above
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Fig. 6. Simulation of membrane fouling for interacting suspension of 5 nm radius: (a) mean permeate 'ux as a function of the transmembrane
pressure, (b) volume fraction at the membrane and cake hydraulic resistance at the channel outlet as a function of TMP.

20 kPa in Fig. 6), a deposit appears on the membrane
even when the 'ux is already clearly limited. The possi-
ble link with the appearance of a gel layer is discussed
below. In the other case, i.e. for a particulate colloid,
the transition is directly correlated to the appearance of
a cake resistance at the outlet of the membrane channel.
This transition between a no-fouling zone (permeate 'ux
equal to water 'ux) and the limiting 'ux ('ux invariant
with TMP) is very sharp.

These )rst results show how the model is able to de-
scribe the 'ux reduction due to concentration polariza-
tion, to irreversible fouling and to cake formation and the
transition between these regimes.

4.2. Formation of irreversible fouling: concepts of
critical <ux and critical P�eclet number

To go further in the analysis, let us take a closer look
at the way irreversible fouling can appear locally on the

membrane. For this purpose, we de)ne the critical 'ux as
the 'ux for which an irreversible deposit begins to appear
somewhere on the membrane surface, indicated by arrows
and the vertical dashed line in Figs. 6 and 7. For large
and stable colloids, we note by comparing Figs. 7a and b
that the transition between the non-fouling condition and
the quasi-limiting 'ux is linked with the occurrence of
the critical 'ux. In this case, the concept of critical 'ux
represents both the )rst local appearance of irreversible
fouling and the average 'ux above which fouling would
be rapid. It should be noted that the average 'ux may
increase beyond the critical 'ux. This can be analyzed
through Fig. 9, where the local permeate 'ux is plotted
as a function of x, the axial coordinate of the membrane
channel, for di5erent TMPs from previous results. As il-
lustrated by the distribution of critical permeate 'ux (un-
derlined by the introduction of a critical PReclet number
in next paragraph), the deposit begins to form near the
outlet of the channel, where hydrodynamic conditions are
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Fig. 7. Simulation of membrane fouling for interacting suspension of 100 nm radius: (a) mean permeate 'ux as a function of the transmembrane
pressure, (b) volume fraction at the membrane and cake hydraulic resistance at the membrane outlet plotted as a function of TMP.

unfavorable and the accumulation is maximum (low criti-
cal 'ux). With increasing TMP, the deposit progressively
spreads and )nally reaches the entrance of the mem-
brane channel. Gourgues, Aimar, and Sanchez (1992) al-
ready suggested this mechanism for cake formation af-
ter visual observations of clay deposits on outer-skinned
hollow )bers and previous models have predicted this
behavior. It should be noted that deposits can be formed
near the module inlet when there is an important pres-
sure drop along the membrane. An important point of the
present model is that particle fouling by a growing cake
can be seen as the natural continuation of concentration
polarization.

In the case of a macromolecular colloid, i.e. small
particles, the 'ux limitation mainly results from con-
centration polarization creating an osmotic pressure dif-
ference: the 'ux is limited by osmotic pressure before
TMP is high enough for the critical 'ux to be reached.
The local critical 'ux for a TMP around 20 kPa (black
squares in Fig. 8) appears all along the membrane at the
same TMP. At this point any further increase in pressure

Fig. 8. Permeate 'ux pro)le along the dimensionless length of the
membrane channel for 5 nm suspension. Pro)les are shown for dif-
ferent transmembrane pressures.

will not increase the steady state average 'ux, but will
induce an additional irreversible phase change. In this
case, the limiting 'ux is almost equal to the critical 'ux
value.
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Fig. 9. Permeate 'ux pro)le along the dimensionless length of the
membrane channel for 100 nm suspension.

Fig. 10. Variation of PReclet number along the dimensionless length
of the membrane channel for 5 nm suspension. Pro)les are shown
for di5erent transmembrane pressures.

As already noted (Bacchin et al., 1995) and con)rmed
here by simulation, the critical 'ux is thus a local con-
cept and is reached for di5erent TMP at di5erent posi-
tions along the membrane channel. It is therefore more
appropriate to introduce a local PReclet number

Pe=
Vw(x)�(x)

Db
; (24)

where Vw and � are, respectively, the local permeate
'ux and boundary layer thickness at a given distance x
from the inlet to the membrane channel. The value of the
boundary layer thickness is calculated by integration of
Eq. (14)

�=
1
Vw

∫ �w

�b

D(�)
�

d�: (25)

The PReclet number represents the ratio of convective
transport Vw to di5usive transport D=� in the bound-
ary layer. The variation of this number along the mem-
brane is represented in Figs. 10 and 11 for data corre-
sponding to distribution of permeate 'ux already plotted
in Figs. 8 and 9. Note that the distribution of critical

Fig. 11. Variation of PReclet number along the dimensionless length
of the membrane channel for 100 nm suspension.

'ux along the membrane due to hydrodynamics is here
represented by a constant PReclet number (the “critical”
value Pecrit). For small colloids, in the absence of an irre-
versible layer, the PReclet number is almost constant along
the membrane, because of the concentration polarization
phenomena which already limit the permeate 'ux. So the
range of TMP for which the irreversible deposit appears
over the whole membrane surface is very narrow. The
critical value for the PReclet number is reached at di5er-
ent points along the membrane at about the same TMP.
This justi)es the idea of a critical pressure. On the other
hand, in the case of large colloids, in the absence of ir-
reversible fouling, the 'ux is almost uniform along the
membrane surface because of negligible osmotic e5ects.
So the PReclet number increases with x because of the in-
creasing thickness of the boundary layer. Thus, the crit-
ical Pe is )rst reached at the outlet of the channel cre-
ating an initial unfouled zone followed by a zone with
irreversible fouling. The concept of critical PReclet num-
ber is of importance for the understanding and the en-
gineering of colloidal )ltration as the transition between
concentration polarization and cake formation along the
membrane surface can be quanti)ed by a single parame-
ter. These considerations must be limited to cases where
membrane-suspension and cake-suspension interactions
are similar: otherwise, there may be one critical PReclet
for forming the )rst monolayer of cake and a di5erent
critical PReclet number for cake growth, thus giving more
complex behavior during )ltration.

To summarize, an important di5erence between macro-
molecular and particulate irreversible fouling arises from
the way the cake appears in the membrane device:

• in the case of particles (“large” colloids), when the
TMP is increased, the cake appears gradually from the
outlet to the inlet of the membrane channel leading to
a progressive rise in 'ux from the )rst local critical
'ux to the overall limiting 'ux. On the other hand, the
transition between limitation by membrane resistance
and limitation by cake formation is very sharp. Thus for
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Fig. 12. Transport phenomena (bold characters) involved in membrane
fouling and mechanisms (underlined characters) coupled together by
transport phenomena.

a large colloid, cake formation (assimilated in the next
section to particle deposition) is a gradually spreading
distribution of fouling with a sharp transition from
non-fouling to fouling conditions.

• in the case of macromolecules (small colloids), when
TMP is increased the phase transition appears simul-
taneously on the whole membrane surface but with a
transition between fouling mechanisms smoother than
in the case of big particles. The gel layer formation,
as de)ned in next section, is then characterized by a
smooth transition between non-limited and limited
<ux induced by concentration polarization limitation;
leading to a simultaneous widespread irreversible
fouling.

In this approach, osmotic pressure appears to be a
key property. It a5ects the 'ux (as traditionally accepted
via Eq. (1)) but it also controls the mass accumulation
through the variation in di5usivity (Eq. (4)). For large
particles having little osmotic e5ect, osmotic pressure still
plays an important role as it determines the phase transi-
tion and so a5ects the critical 'ux for irreversible fouling.

4.3. Analysis of transport phenomena implied in the
fouling

The approach adopted in this work underlines im-
portant di5erences in the mechanisms responsible for
membrane fouling depending on the size of the colloid
)ltered. A more detailed analysis of the importance of
each transport phenomenon involved in the fouling can
be instructive.

Fig. 12 summarizes the links between driving forces
(permeation, entropic di5usion, attractive and repulsive
colloidal interaction) and mechanisms implied in the foul-
ing (concentration polarization, gel formation and depo-
sition). First, transport phenomena can be classi)ed into
three categories:

• the driving phenomenon for fouling is permeation. At
the same time, it is essential for the separation and

can be seen as the separation force. This antagonism
explains the fact that pressure driven membrane
separation can never be performed without mass
accumulation.

• the regulating phenomenon, such as entropic di5usion
or repulsive colloidal interaction, limits fouling. These
phenomena can be seen globally as mixing e5ects, in
contrast with the demixing (separating) e5ect of per-
meation.

• the irreversible phenomenon, attractive interaction,
emphasizes fouling and introduces an irreversible
character. This third category of transport phenomena
is responsible for the liquid=solid transition leading
to the deposition of particles and can be seen as a
“reaction” from liquid to solid phase.

Conditions for fouling are the result of a physical com-
bination of these transport phenomena. Concentration po-
larization is a totally reversible mass accumulation at the
membrane surface. This mechanism implies a balance be-
tween a driving and a regulating phenomenon and does
not bring into play attractive interactions between the so-
lute in solution and the solute already deposited. The reg-
ulating phenomenon for small particles can be entropic
di5usion which is associated with an osmotic pressure
comparable to the driving TMP. In this case, concentra-
tion polarization reduces permeate 'ux below the pure
water 'ux (see Fig. 6, below the critical 'ux). For large
colloids or very concentrated macromolecular solutions,
concentration polarization is a balance between perme-
ation and repulsive interaction. But the osmotic pressure
here is very low and )ltration below the limiting 'ux is
essentially limited by the membrane resistance. To sum-
marize, for large colloids, concentration polarization does
occur but it has hardly any e5ect on )ltration because of
the low value of osmotic pressure.

If the colloidal system exhibits attractive interac-
tion for small inter-particle distances (i.e. high volume
fraction) and if the driving force is high enough, surface
attraction between solute in solution and solute already
deposited leads to an irreversible fouling phase (liquid to
solid transition). At this point, two cases can be consid-
ered depending on the nature of regulating phenomenon:

• If repulsive interaction is dominant (large colloids —
right-hand side of Fig. 12), the high concentration
of repulsive colloid at the membrane surface should
lead to an orderly organization of particles in the po-
larized layer according to Russel et al. (1989). The
liquid=solid transition which occurs if the volume frac-
tion exceeds the critical value, would then create a rela-
tively compact and organized deposit at the membrane
surface. One might imagine this as a “ballistic” depo-
sition mechanism with contacts resulting from linear
trajectories (Chapter 6.4 in Elimelech, Gregory, Jia,
and Williams, 1995); these linear trajectories would
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Fig. 13. Diagram showing fouling mechanisms as a function of colloid
size (or surface repulsion) and driving force (transmembrane pressure
or permeate 'ux).

arise from the oriented nature of di5usion in ordered
suspensions (collective di5usion).

• In the opposite case, the importance of entropic di5u-
sion will create a disordered solid phase formed under
totally attractive interaction. Each contact between so-
lute in suspension and solute deposited on the mem-
brane will result in a liquid=solid transition. Moreover,
because of Brownian di5usion, contacts will occur in
all directions. The result is a “dendritic” layer lead-
ing to a loose deposit, usually called a gel. It is clear
that between these extreme cases there can exist situ-
ations intermediate between gel and deposit, depend-
ing on the physico–chemical properties of the )ltered
media.

Fig. 12 brings these ideas together in a simple form. It
can be seen as an operating diagram where fouling mech-
anisms are located as a function of the driving force and
the colloid size (and=or intensity of surface interaction),
where four areas appear: concentration polarization, gel
layer, non-fouling and deposition (Fig. 13). Globally,
the driving force can, if high enough, give rise to irre-
versible phenomena. The colloid size (or more generally
its physico–chemical properties) plays a role in the way
the deposit is formed at the membrane surface (gel for-
mation and deposition). The transition between reversible
and irreversible fouling and its e5ect on 'ux is increas-
ingly sharper as the colloid size increases (as illustrated
by the gray gradation in Fig. 13). With the engineering
aspect in mind, it would be interesting to determine exact
transitions between these fouling mechanisms whose con-
sequences for the process are radically di5erent. For ex-
ample from Fig. 6, one has to limit the TMP to 20 kPa to
prevent the formation of a strongly irreversible gel layer.
Such a transition depends on physico–chemical properties

such as ionic strength or zeta potential. It is then possible
to determine a critical PReclet number to characterize the
transition between non-fouling and deposition. Our ob-
jective in future work will be to use the model to delimit
quantitatively the border shown in Fig. 13 as a function
of the physico–chemical properties of the suspension and
operating conditions.

4.4. Limiting and critical <ux

The limiting 'ux is the maximum stationary 'ux ob-
tained when increasing TMP. As discussed in the pre-
vious section, consideration of the transport phenomena
involved in fouling makes it possible to distinguish two
kinds of limiting 'uxes: limiting 'ux controlled by en-
tropic di5usion (LFED) and limiting 'ux controlled by
surface repulsion (LFSR). Unlike the limiting 'ux, the
critical 'ux is a criterion for the transition between con-
centration polarization and fouling, i.e. when attractive
interaction occurs between colloids near the membrane
(critical 'ux for surface attraction CFSA). The critical
'ux is reached when irreversible fouling occurs at a cer-
tain point on the membrane, whereas the limiting 'ux is
reached when the whole membrane surface operates at
the critical 'ux. Experimentally, the critical 'ux can only
be measured by having each step up in TMP followed by
a smaller step down so as to detect the )rst irreversibil-
ity in the system; in comparison, the limiting 'ux is easy
to measure. But the critical 'ux can provide more infor-
mation on fouling and on the way the process has to be
run. Whereas solute accumulation can never be totally
eliminated from a )ltration process, irreversible fouling
can be avoided if the process is run below the critical
'ux. This possibility opens up interesting perspectives
for the )ltration of stable colloids exhibiting low osmotic
pressure.

5. Conclusions

The model presented and discussed in this paper is
capable of accounting for concentration polarization,
gel-layer formation and particle deposition and depicting
the continuity between the major fouling mechanisms
involved in ultra)ltration of colloidal suspensions. It
shows that a single theoretical approach is capable of
covering a wide range of suspension sizes and of cross
'ow situations. Basic transport phenomena, such as con-
vection and di5usion (with colloidal interactions and
their concentration dependence taken into account) are
su6cient to create a realistic description of concen-
trated suspensions without introducing any adjustable
parameters, such as an a priori value for the gel concen-
tration. In the present model, colloidal interaction acts
both on transport phenomena (di5usive properties of the
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suspension) and on the interface process of cake for-
mation. This complexity of colloidal suspensions allows
a physically realistic description of mass accumulation
(by separation and mixing in a boundary layer) and
liquid=solid transition (by “reaction” at the membrane
surface). In particular, the variation of osmotic pressure
with the volume fraction of the suspension seems to be
a key element for the fouling model, as it speci)es the
condition for liquid=solid transition, i.e. the formation of
a gel layer or deposit. This two-dimensional simulation
allows realistic suspension physics to be combined with
an accurate representation of hydrodynamics.

Through simulation, the local permeate 'ux and the 2D
concentration distribution may be visualized. Variation
of stationary 'ux with transmembrane pressure (TMP)
clari)es the contribution of membrane resistance, con-
centration polarization and irreversible layer formation to
limiting the 'ux for di5erent sizes of colloids. The rela-
tive importance of these di5erent e5ects is found to de-
pend on the operating conditions (such as TMP) and the
suspension properties (colloid size and physico–chemical
parameters). The model shows its capacity to describe the
continuous transition from concentration polarization to
cake formation by seeing cake formation in a feed-back
relationship with the concentration polarization: the cake
layer is formed when the volume fraction at the mem-
brane exceeds a critical value corresponding to a maxi-
mum in osmotic pressure and the cake formation causes
a decline in 'ux until concentration returns to the critical
value. Physically, the attractive colloidal interaction be-
tween particles is shown to be responsible for the coagu-
lation of particles on the membrane giving an irreversible
solid layer. This irreversible layer is seen to appear in the
membrane device for a critical PReclet number which is
constant along the membrane surface, as this dimension-
less number takes into account the di5erence in hydro-
dynamic conditions. It thus appears as a key parameter
for engineering the process. The following distinction is
made between two mechanisms for the formation of ir-
reversible layers:

• The gelation mechanism: formation of loose layer with
a low fractal dimension, appearing simultaneously
across the membrane surface.

• The deposition mechanism: formation of a compact
ordered deposit growing progressively from the outlet
to the inlet of the membrane device.

From the numerical tools provided by the model and
the better understanding of fouling that it allows, tools for
process optimization must now developed. As an exam-
ple, precise determination of the border between fouling
mechanisms can help in choosing operating conditions
within the reversible accumulation zone. Here, the criti-
cal PReclet number is obviously a key parameter for engi-
neering the process. On the other hand, our speculations

about gel or deposit formation need to be checked exper-
imentally and could open up interesting perspectives for
understanding the structure of deposit layers.

Notation

A Hamaker constant, M L2 T−2

a particles or macromolecules radius, L
D di5usion coe6cient, L2 T−1

f friction factor
H Happel correction for sedimentation velocity
J mean permeate 'ux, L T−1

k Boltzman constant, M L2 T−2 K−1

m mobility of particle or macromolecule, M−1 T
P pressure, M L−1 T−2

Q 'ow rate, L3 T−1

R membrane channel radius, L
Rc hydraulic resistivity of deposit, L−1

Rm hydraulic resistivity of membrane, L−1

T temperature, K
u axial velocity, L T−1

Vw local permeate 'ux at the wall, L T−1

Vp particle or macromolecule volume, L3

x axial direction in the membrane channel, L
z radial direction in the membrane channel, L

Greek letters

� di5usive boundary layer thickness, L
� zeta potential, V
# inverse of Debye length, L−1

� viscosity, M L−1 T−1

� osmotic pressure, M L−1 T−2

� solution density, M L−3

� volume fraction

Subscripts

0 inlet
b bulk
c critical
cp close packed
w wall
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Appendix

The osmotic pressure of a suspension of interacting
colloidal particles is considered as the sum of entropic,
electrostatic and van der Waals contributions, which are
evaluated by using a cell model.

The entropic contribution due to the particle distribu-
tion is approximated by Hall’s (1972) equation for hard
spheres:

�ent(�)=
3kT
4�a3�

× (1 + � + �2 − 0:67825�3 − �4 − 0:5�5 − X�6)
1 − 3� + 3�2 − 1:04305�3

(A.1)

with X =6:2028exp[(�cp −�){7:9− 3:9(�cp −�)}] and
�cp =�

√
2=6 as in hexagonal close packing.

In the low-concentration limit, the traditional van’t
Ho5 equation is obtained.

The van der Waals contribution is obtained by di5er-
entiating the van der Waals free energy with respect to
the number of solvent molecules; this gives (JKonsson &
JKonsson, 1996)

�vdw(�)= − znA
48�a3

�3

(�cp − �1=3
cp �2=3)2

where zn is the number of neighboring particles in the
cell lattice (12 in the case of a hexagonal lattice) and A
is the Hamaker constant.

When interacting particles are charged, electrostatic
interactions occurs between particles. Their contribution
is included in the osmotic pressure calculation using the
Wigner–Seitz cell approach and solution of the Poisson–
Boltzmann equation. Bowen and Jenner (1995) derive
the following relationship:

�elec(�)=
'
zn

NAkTc0

[
cosh

(
#a�∗

#a�−1=3 cosh{#a(1 − �−1=3)} + sinh{#a(1 − �−1=3)}
)
− 1

]
;

where �∗ = ez�=kT is the reduced zeta potential, # the
Debye–HKuckel parameter, NA Avogadro’s number and I
the ionic strength.
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