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Abstract

During filtration via membrane processes, colloids accumulate at the porous surface leading to fouling phenomena.
In this study, a rigorous simulation of momentum and mass transfer using CFD modelling has been developed to
describe such an accumulation during cross flow filtration. These simulations integrate detailed modeling of physico-
chemical properties specific to colloidal dispersions (because of the surface interactions (repulsive and attractive)
occurring between the colloids particles). These interactions are accounted for via the experimental variation of the
colloidal osmotic pressure with volume fraction (associated with a variation in the diffusion coefficient) which are
fitted by a relationship integrated into the CFD code. It contains a description of the colloidal phase transition
leading to the formation of a condensed phase (deposit or gel layer) from the accumulated dispersed phase
(concentration polarization). It is then possible to determine the critical flux which separates filtration conditions
below which mass accumulation is reversible (in the dispersed phase) and above which it is irreversible (in the
condensed phase). The computed value of critical flux is compared with that determined experimentally for a
dispersion of latex particles.
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1. Introduction

Colloidal dispersions are encountered in many
fluids requiring filtration via membrane processes.
However, these dispersions exhibit special proper-
ties, mainly because of the surface interactions
(repulsive and attractive) occurring between the
colloid particles. Such interactions have been shown
to be responsible for aggregation phenomena on
the membrane surface induced by the permeate
flux; thus leading to the concept of critical flux
which separates filtration conditions below which
mass accumulation is reversible (concentration
polarization) and above which it is irreversible
(coagulated deposit). The aim of this work is to
combine a representation of the physico-chemical
properties of these colloidal dispersions with a
rigorous simulation of momentum and mass trans-
fer using CFD modelling. The ultimate aim is to
describe the first appearance of a deposit on the
membrane, to compare this simulated value with
experimental determinations of critical flux.

2. Mathematical formulation and membrane
transfer model

The mathematical model is based on the same
formulation as that developed by Wiley and
Fletcher [1] and described in detail in [2]. Equa-
tions for the conservation of mass, momentum and
particle mass fraction are solved assuming incom-
pressible fluids and no slip between the particles
and the water. The membrane is assumed to be
perfectly rejecting. The fluid extraction via the
membrane (local permeate flux) is modeled via
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where Rm is the membrane resistance, and ∆P and
∆π are the local differences of the applied pressure
and the osmotic pressure across the membrane,
respectively. If the membrane is fully retentive
the difference in osmotic pressure is the osmotic
pressure at the membrane wall, πm.

3. Model for colloidal transport properties

The behavior of the colloidal suspension is
based on the variation of the osmotic pressure with
the particle volume fraction. The colloidal osmotic
pressure (or more precisely the variation of the
osmotic pressure with the volume fraction) has
been theoretically shown as useful to predict the
behavior of concentrated colloidal dispersion and
phase transitions occurring in the dispersion [3].
The critical transition between the dispersed phase
and the aggregated phase (defined in [4] as a
spinodal decomposition) is modeled by a zero
derivative of osmotic pressure with volume frac-
tion [3,4]. A critical volume fraction (and an asso-
ciated critical osmotic pressure) can be defined
above which an irreversible aggregation occurs
between particles.

3.1. Description of the colloidal osmotic pressure

Experimental measurements of the colloidal
osmotic pressure have been performed on a stable
latex dispersion (PVC spheres of 120 nm in diame-
ter with a standard deviation of 20 nm and with a
zeta potential of –71 ± 2 mV at 0.001 M in KCl)
with an osmotic stress technique [5]. This tech-
nique is based on the compression of the disper-
sion put in a dialysis bag with a stressing polymer.
At equilibrium, the chemical potential of water
on either side of the membrane is equal and there-
fore the osmotic pressure of the dispersion equals
that of the polymer in the reservoir. Increasing
the amount of polymer in the reservoir (and the
associated osmotic pressure) and measuring the
concentration of the dispersion (determined with
a drying mass balance Mettler–Toledo, Switzer-
land at 120°C) when equilibrium is reached allows
determination of the variation of colloidal osmotic
pressure with the volume fraction (symbols in
Fig. 1). Qualitative reversibility tests were carried
out on the equilibrated latex dispersion by immers-
ing them in an excess of water to see whether they
could be dispersed. In Fig. 1, black symbols repre-
sent latex dispersion for which the concentration
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by osmotic stress was impossible (aggregated
phase). A phase transition occurs at a volume frac-
tion around 0.58.

In this work, we fit the experimental variation
of osmotic pressure for latex suspension with a
mathematical relationship having a zero derivative
at the critical transition. The relationship used for
this work (for volume fractions below the critical
value) has the following form:
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with values for the fitting parameters as given in
Table 1 for the osmotic pressure in Pa.

This expression has a maximum osmotic pres-
sure with volume fraction (the spinodal decom-
position) at a volume fraction of 0.5765, with an
associated critical osmotic pressure of 14158 Pa.

Above the critical volume fraction, the varia-
tion of the osmotic pressure with volume fraction
has been fitted with the relationship:
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Fig. 1. Variation of osmotic pressure with volume fraction. The symbols represent the experimental osmotic pressure
value for the latex dispersion (open symbol: latex in dispersed phase, closed symbol: latex in condensed phase). The line
represents the model fit.

Table 1
Values of parameters of Eq. (2) fitting the experimental
data of Fig. 1

Parameter Value 
a 1.182×10 
b 2.859 
c –4.757×102 

d –2.128×103 

e –4.462×104 

f 2.632×104 

crit crit
crit
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m
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cp cp

m
⎛ ⎞⎡ ⎤φ − φ φ − φ⎜ ⎟π = π −⎢ ⎥
⎜ ⎟φ − φ φ − φ⎢ ⎥⎣ ⎦⎝ ⎠

(3)

This equation is a modified form of the classic-
al form for the compressive yield stress compres-
sion [6] which ensures that at the critical point the
osmotic pressure and its derivatives are continuous
with volume fraction. This relationship has an
infinite limit at the close packed volume fraction.



P. Bacchin et al. / Desalination 192 (2006) 74–81 77

The exponent, m, in this relation corresponds to
the compressibility of the condensed phase: a small
value of m gives a small compressibility, i.e. the
solid pressure increases rapidly with volume frac-
tion. To fit the experimental data, the compressi-
bility m is set to 5.7.

3.2. Consequences of colloidal osmotic pressure
on transfer phenomena

The variation of osmotic pressure has two
major consequences on transfer phenomena:
1. it affects the permeate flux in the classical

manner given in Eq. (1);
2. it affects the way mass accumulates. Here we

model collective diffusion via the Stokes–
Einstein law [7] where the diffusion coefficient
is proportional to the derivative of the osmotic
pressure with respect to the volume fraction:
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where a is the particle radius, Vp its volume and
µb the viscosity of the water. The Happel function
H(φ) accounts for the effect of concentration on
the drag force and is given by:
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This expression leads to the variation of the
diffusion coefficient with volume fraction pre-
sented in Fig. 2. In such modeling, repulsive long
distance interactions induce an increase of osmotic
pressure and a relative increase in the diffusion
coefficient [8]. When attraction between particles
becomes important (as the critical transition is
approached), it leads to a decrease in the osmotic
pressure variation with volume fraction and an
associated decrease in diffusion: the spinodal de-
composition gives a coefficient of diffusion of
zero, causing irreversible phenomena. Above the
critical volume fraction, the diffusion of the con-
densed phase is given by the derivative of Eq. (3)
with respect to the volume fraction:
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The diffusion of the condensed phase used in
this  work  is  similar  to  the  cake  diffusivity
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Fig. 2. Variation of the diffusion coefficient with the volume fraction for the osmotic pressure model presented in Fig. 1.
The critical transition is depicted with a diffusion coefficient of zero.
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developed by Sherwood [9] for description of
compressible filter-cake compaction.

The variation of the viscosity with volume frac-
tion needed for the Navier–Stokes equations is
accounted for using the Eilers–Chong relationship
[10]:

( )
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µ − φ φ⎢ ⎥⎣ ⎦
(7)

4. Solvent transfer and colloidal osmotic
pressure

As shown in Eq. (1), a classical filtration law
is used to link the permeate flux to the colloidal
osmotic pressure at the membrane surface. Such
a model is classical when considering the polariza-
tion concentration mechanism. However, here the
same law is used to describe the filtration when
the critical volume fraction is reached (i.e. when
a condensed phase (gel or deposit) appears at the
interface). Such a description is based on the
analogy made between the osmotic pressure
model and the gel layer model described by [11]
and on the relationship between the osmotic pres-
sure (which above the critical point can be seen
as the stress within the matrix of particles) and
the liquid pressure. It can be assumed [9] that the
sum of the liquid pressure and the osmotic pressure
is constant in the condensed phase (Fig. 3):

i i m mp p+ π = + π (8)

By applying Darcy’s law through the con-
densed phase having a resistance, Rc:

i m
w

c

p pv
R
−

=
µ

(9)

Assuming, when a condensed phase forms at
the membrane, the osmotic pressure at the inter-
face πi is equal to πcrit (the maximum reachable
osmotic pressure in the dispersed phase), the com-
bination of Eqs. (1) and (9) leads to the following

expression for the osmotic pressure of the con-
densed phase at the membrane:

critm w cv Rπ = π + µ (10)

When the critical point is reached and a con-
densed phase is formed, the osmotic pressure used
in Eq. (1) can then be viewed as the addition of a
critical osmotic pressure, πcrit, and a contribution
related to a cake resistance [the second term in
Eq. (10)]. Eq. (1) for solvent transfer can then be
used to understand the formation and the growth
of deposit (or gel) layers.

5. Numerical method and solution procedure

The equations for mass and momentum conser-
vation were solved using the finite volume CFD
code ANSYS CFX5, (version 5.7). A two-dimen-
sional, axisymmetric slice of the tube was meshed
with a structured mesh, generated in ICEM- HEXA,
having a very fine mesh near the membrane sur-
face. The nearest node from the surface was
located one micron away from the surface and

Fig. 3. Evolution of the liquid pressure and the osmotic
pressure through the polarized layer and the condensed
phase on a membrane (subscript b for bulk, i for inter-
face, m for membrane and p for permeate). 
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the mesh expanded smoothly towards the tube
axis. Wall extraction was implemented via user
routines and the expressions for the variable vis-
cosity, diffusivity and osmotic pressure were written
in CFX Expression Language. This made the
model very flexible and easy to use for the study
of parameter variations and model sensitivities.

At low extraction rates, convergence to a
steady-state solution was very easy, with low
normalized residuals (<10–5) and good mass
balances (<0.01%) being obtained in a few hund-
red iterations. At higher extraction rates conver-
gence was more difficult because of the strong
coupling between the particle volume fraction and
the fluid properties. Performing under-relaxation
using expert parameters proved to be very helpful.
Once the particle fraction approached the critical
level for deposit formation it was found to be
optimal to switch to a transient solution. A pressure
step of typically 0.05 bar was made and a transient
simulation was run until this reached a new steady-
state.

The model results are extremely sensitive to
the numerical mesh and the accuracy of the
numerical scheme. Whilst first order differencing
gave much faster convergence, the results showed
enormous differences from a higher order scheme.
Using the high resolution scheme, which seeks to
use an optimal combination of first and second order
schemes to provide a bounded solution proved
optimal, as pure second order scheme led to over-
shoots. In addition, it was found to be beneficial
to ramp down the extraction flux at the end of the
membrane to avoid a step change. This was done
using a hyperbolic tangent function over the last
0.05 m of the membrane. 

6. Results

6.1. Critical flux description

The use of the modeling of concentrated
colloidal phases presented above in the CFD code
provides a realistic description of mass accumula-
tion at the membrane. It is then possible to

simulate the formation of the condensed phase
from the polarized layer. This irreversible (and
then critical) transition between a dispersed and a
condensed accumulation can be numerically found
when the driving pressure is large enough. How-
ever, this driving pressure is different if the mem-
brane permeability it changed but the transition
occurs for the same permeate flux; it is defined as
the critical flux.

The system studied comprised a 1.4 m long,
6 mm diameter tube, comprising a 0.1 m entry
length (to develop the flow), a 1.2 m member
section and a 0.1 m outlet zone. A particle laden
flow containing 0.5 g/l of 120 nm diameter par-
ticles entered the tube with a mean liquid velocity
of 0.6 m/s in cross-flow mode. The membrane
resistance permeability was 5.9×10–12 m–1. Fig. 4
shows the variation with driving pressure of both
the maximum (at the outlet of membrane channel)
and mean values of the particle volume fraction
on the membrane surface. It is evident that the
critical conditions are reached at the end of mem-
brane for a driving pressure of around 2.6 bar. This
corresponds to a flux of around 0.04 kg m–2 s–1, as
shown in Fig. 5. For these conditions, the maximum
osmotic pressure of the dispersed phase (around
0.14 bar in Fig. 1) represents only 5% of the applied
pressure. The effect of the osmotic pressure on
the permeate flux [Eq. (1)] is then negligible
(Fig. 5). A deviation from linearity just appears
when the condensed phase begins to form at the
end of the membrane channel: the code describes
a strong form of critical flux (permeate flux is
equal to water flux below the critical value).

6.2. Comparison with experimental value

Experimental filtrations have been performed
for the same hydrodynamic conditions (0.6 m/s)
and with latex particles dispersed in 0.001 M KCl
characterized by the osmotic pressure variation
with volume fraction presented in Fig. 1 [5]. The
filtration allows an accurate determination of the
critical flux according to a procedure based on
controlled alternating increasing and decreasing
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Fig. 4. The calculated average and maximum particle fraction on the membrane surface as a function of the transmem-
brane pressure.
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Fig. 5. The calculated flux as a function of the transmembrane pressure.

pressure steps with the measurements of the steady
state flux. The experimental critical flux has been
determined at 10.1×10–6 m/s [12]. The simulated
values of critical flux are then approximately 4
times higher than those observed experimentally.

Such a discrepancy could be explained by the
heterogeneity of the porous wall which affects
locally the permeate flux [13]. For a given pressure
and then an averaged permeate flux, critical con-
ditions can exist at the membrane surface with a
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higher local permeate flux and then more impor-
tant particle accumulation [12]. Future work will
investigate the effect of such distributions on the
mass accumulation in a membrane channel.

7. Conclusions

A rigorous simulation of momentum and mass
transfer using CFD modelling has been developed
to describe colloids accumulation at a membrane
surface during cross flow filtration. These simula-
tions integrate detailed modeling of physico-
chemical properties specific to colloidal dispers-
ions (because of the surface interactions (repulsive
and attractive) occurring between the colloids
particles). These interactions are accounted for via
the experimental variation of the colloidal osmotic
pressure with volume fraction which is fitted by a
relationship integrated into the CFD code. It con-
tains a description of the colloidal phase transition
leading to the formation of a condensed phase
(deposit or gel layer) from the accumulated dis-
persed phase (concentration polarization) and then
to determination of the critical flux which sepa-
rates filtration conditions below which mass
accumulation is reversible (in the dispersed phase)
and above which it is irreversible (in the con-
densed phase). The computed value of critical flux
is compared with that determined experimentally
for a dispersion of latex particles.
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