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Distributions of critical flux: modelling, experimental analysis
and consequences for cross-flow membrane filtration
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Abstract

This paper discusses the consequences of possible distribution of critical flux (DCF) in cross-flow filtration. These distributions are described
here by a normal function with a mean critical flux and its standard deviation. The DCF model allows the description, through an analytical
relationship, of the variation in steady state permeate flux with trans-membrane pressure. Both strong and weak forms of critical flux, which
can be observed on a membrane operating in cross-flow mode, are depicted. A simple graphical method to determine the mean critical flux and
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ts standard deviation from experimental results is derived from the theoretical model. The theoretical trends are compared to ex
ata and show good agreement for cross-flow filtration of latex and BSA suspensions. The distribution function parameters obtaine

he DCF model to experiments are compared to critical flux measured via a pressure step method. We thus propose a tool to anal
esults and to determine new global parameters for critical conditions (mean value and its standard deviation), which appears to
ay to account for fouling complexity.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Critical flux is a concept that appeared in the mid 1990s
1–4] to describe the lowest flux for which fouling appears
n a membrane. Since then, it has been generally accepted

hat critical flux represents the permeate flux below which no
ouling occurs.

However, such a sharp transition is not often observed in
ractice and discrepancies between the concept and exper-

ments are observed. Even experimental works carried out
ith well-characterized suspensions and membranes often
xemplify this discrepancy[5,6] and this is further presented

n the experimental section of this paper. To take this into ac-
ount, the concept of critical flux has sometimes evolved by
istinguishing a weak form of critical flux from the original
trong form of critical flux[7]. The weak form of critical flux

∗ Corresponding author. Tel.: +33 5 61 55 81 63; fax: +33 5 61 55 61 39.
E-mail address:bacchin@chimie.ups-tlse.fr (P. Bacchin).

is based on the subtle difference between slow fouling co
tions (inducing permeability smaller than that obtained w
a clean membrane filtering pure water) and faster fouling
ducing a deviation from the initial linearity of theJ versus
TMP curve). The weak form of critical flux thus shows
ability to describe experiments with numerous fluids fr
model fluids to complex ones[7]. However, this weak form
of critical flux loses the original significance of the previo
concept of critical flux and has no direct theoretical grou
ing.

The main thesis of this paper is to examine if distributi
(around a mean value) of critical flux (where critical ref
to the strong form of the concept) could be an explana
for behaviour observed during membrane fouling (and
associated weak form of critical flux) and if it could be u
as a new tool to interpret filtration data.

In previous studies, the utility of accounting for the d
tribution of membrane or suspension properties in fou
modelling has already been shown. Yoon et al.[8] reported
that when developing a full model accounting for the m
376-7388/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.memsci.2004.10.033
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transport phenomena, fouling is very sensitive to particle
size: the integration of a distribution in particle size can lead
to very different fouling simulations. Furthermore, Bowen
et al. [9] used the probability distribution function for de-
position related to hydrodynamic conditions that they link
to randomly distributed protrusion height to describe mem-
brane roughness. This distribution improved the prediction of
a Wigner–Seitz cell-based model accounting for multi-body
inter-particle interactions. In a recent paper[10], one of us
showed that the growth of the boundary layer thickness along
a membrane due to hydrodynamic layer development (a form
of hydrodynamic conditions distribution) leads to a distribu-
tion in local critical flux resulting in a more realistic variation
in permeate flux with TMP.

In a first part of the paper, the model for a deposit forma-
tion under a distribution of critical flux (DCF) is developed
and the effect of a standard deviation around a mean criti-
cal flux is investigated. Experimental data of cross-flow ul-
trafiltration of latex suspensions for different hydrodynamic
conditions are interpreted through the DCF model leading to
the conclusion that experimental results could be explained
by a distribution in critical flux. A comparison of critical flux
parameters with experimental determination of critical flux
via the pressure step method is further presented. Lastly, the
possible origin for critical flux distribution and consequences
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of altering the applied TMP. It should be noted at this point
that considering a distribution ofjcrit with a constantj0 in
fact has the same consequence as considering one value of
critical flux and a distribution ofj0 (which could be due to
local heterogeneity of membrane porosity as discussed in
Section4.1).

2.1. Distribution of critical flux

A normal (or Gaussian) distribution is characterised by
the probability density function, pdf(j), or by the cumulative
distribution function, cdf(j), as presented inFig. 1and defined
by the following equations:

pdf(jcrit) = 1

σ
√

2π
e−((jcrit−jcrit)

2
/2σ2) (1)

cdf(j) =
∫ j

−∞
pdf(jcrit) djcrit (2)

The probability density function (pdf) is the density of prob-
ability such that the probability of the critical flux of being in
the interval [a; b] is given by the integral of this function be-
tweenaandb. The pdf function can then give the probability
of having a critical flux between two values. The cumula-
tive distribution function (cdf) is then the probability that the
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f the DCF model are discussed. This paper finally give
xplanation for the discrepancy between the “hard theor
ritical flux and “real world” membrane applications.

. Model for distribution of critical flux (DCF)

The model is based on a normal distribution of critical
round a mean value (this distribution is justified in Sec
.1). On the other hand, we considered an initial flux (be
ny fouling), j0, constant along the membrane. Param

0 is the pure water flux through a clean membrane an
roportional to the applied TMP (trans-membrane press

0 is used on thex-axis of certain figures to describe the eff

ig. 1. Normal distribution of critical flux characterised through the pr
or the same mean critical fluxjcrit of 20.10−6 m s−1 and three standard d
ritical flux, jcrit, is less than or equal to a given flux valuj.

.2. Consequences on fouling conditions

Various fouling regimes can be expected when a run
een started with an initial flux,j0, if a distribution in critica
ux exists. The cdf function calculated for the initial fluxj0
ives the probability of having a critical flux below or abo

t. Three different situations and their associated probabi
an be determined, as shown inFig. 2:

No fouling (nf) if the critical flux is larger than the initi
flux (jcrit > j0). The probability for such a situation to occ
is pnf = 1− cdf(j0).

y density function, pdf, and the respective cumulative distribution function, cdf
nsσ of 5, 10 and 20.10−6 m s−1.
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Fig. 2. Probability scale for fouling conditions and associated permeate flux: (1) probability, cdf(0), for unlimited fouling (uf) and permeate flux nil; (2)
probability, cdf(j0) − cdf(0), for fouling limited by critical flux (cf) with a permeate flux given by the expected value of critical flux in Eq.(5); (3) probability,
1− cdf(j0), for no fouling (nf) and a permeate flux being the water flux.

• Critical fouling (cf) if the critical flux is smaller than the
initial flux but larger than zero (0 <jcrit < j0). The probabil-
ity of this situation ispcf = cdf(j0) − cdf(0).

• Unlimited fouling (uf) if the critical flux is smaller
than zero (jcrit < 0). The probability of this situation is
puf = cdf(0).

To each of these situations is associated a permeate flux
at steady state. In no fouling (nf) conditions, the permeate
flux is given by the water flux,jnf = j0. In contrast, for unlim-
ited fouling (uf) conditions, one considers absence of station-
ary permeate flux and then a permeate flux nil in the steady
state,juf = 0, which could correspond to a membrane zone
where fouling is continuously increasing (a steady state is
not reached) or to complete pore blockage. In the intermedi-
ate fouling conditions, where the critical flux is between zero
and the pure water flux 0 <jcrit < j0, fouling is limited by the
critical flux (cf) value: it is assumed here that if the water flux
overcomes the critical flux then a deposit forms until the flux
again reaches the critical value. The resulting permeate flux
associated with this event is a “mean” critical flux correspond-
ing to the value of the various possible values of critical flux
weighted by their relative probabilities. This “mean” critical
flux for these conditions (0 <jcrit < j0) is written with the clas-
sical function for the expected valueE(jcrit/0 < jcrit < j0) which
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Using the probability and the permeate flux as discussed in
Section2.2 leads to:

j = (1 − cdf(j0))j0 + (cdf(j0)

− cdf(0))E (jcrit/0 < jcrit < j0) (4)

The expected value for the critical fluxE(jcrit/0 < jcrit < j0)
which represents the “mean” value of critical flux (in m s−1)
when the critical flux is positive and lower that the water flux,
is defined as the integral of each possible value of the critical
flux, jcrit, multiplied by its probability, pdf(jcrit), divided by
the total probability for this event:

E (jcrit/0 < jcrit < j0) =
∫ j0

0 pdf(jcrit)jcritdjcrit∫ j0
0 pdf(jcrit)djcrit

(5)

One can demonstrate (full calculation inAppendix A) using
the previous definition of the probability distribution that:

E (jcrit/0 < jcrit < j0)

= jcrit (cdf(j0) − cdf(0)) − σ2(pdf(j0) − pdf(0))

cdf(j0) − cdf(0)
(6)

The permeate flux is then linked through Eqs.(4) and(6) to
the value of the water flux and to the parameters of the critical
flux distribution (the mean critical flux,jcrit, and its standard
d

j
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t P)
s mathematically defined later in Eq.(5). The permeate flu
ssociated with the event (cf) is then equal to the cri
ux expected,jcf =E(jcrit/0 < jcrit < j0). These three possib
ouling conditions control the global permeate flux on
embrane (the sum of their probabilities is equal to one

.3. Consequences on the global permeate flux

The resulting global permeate flux,j, through the mem
rane can be estimated as the sum of the flux of each o
ossible situations defined above, weighted by its probab

= pnfjnf + pcfjcf + pufjuf (3)
eviation,σ) as follows:

= (1 − cdf(j0))j0 + jcrit (cdf(j0) − cdf(0))

− σ2(pdf(j0) − pdf(0)) (7)

his relationship can be used to describe the reductio
ux induced by the fouling under distributed critical co
itions. Such a relationship can be easily calculated w
lassical spreadsheet program, if the pdf or cdf functio
redefined.1

Fig. 3shows the variation in fouling resistance as a fu
ion of the water flux (which could also be linked to the TM

1 Spreadsheet program files are available on request.
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Fig. 3. Permeate flux (a) and deposit hydraulic resistance (b) vs. water flux. Graphs are plotted for different standard deviations,σ, for a mean critical flux,Jcrit,
of 20.10−6 m s−1 corresponding to distributions inFig. 1.

simulated for the distribution previously presented inFig. 1.
Different fouling behaviours can be described with such a
model according the value of the standard deviation. For a
low value of standard deviation (σ = 5), the model depicts a
sharp transition between a Darcy behaviour and a pressure-
independent regime (strong form of critical flux) with an asso-
ciated sharp change in cake resistance above the mean value
of critical flux. In contrast, for higher values of standard de-
viation (σ = 10 and 20), a more gradual transition is observed
(weaker form of critical flux).

2.4. Graphic method to determine distribution
parameters

Eq.(7), which models the permeate flux, has some partic-
ular features shown inFigs. 4 and 5. For small water flux, the
limit of Eq. (7) is:

lim
j0→0

j = j0(1 − cdf(0)) (8)

The slope of the curve “permeate flux versus water flux” tends
to 1− cdf(0) which corresponds to the probability of having
a non-nil flux. This can be translated into an initial cake re-
sistance directly linked to the value of cdf(0) as follows:

lim
j

Rc = 1
(9)
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corresponds to the coordinates [2jcrit; jcrit] in Fig. 3a and
[2jcrit; 1] in Fig. 3b.

Also the value of the permeate flux taken for a water flux
equals the mean critical flux is:

j0 = jcrit,

j = jcrit(1 − cdf(0))− σ√
2π

+ σ2pdf(0)

= jlim − σ√
2π

(11)

The value of the permeate flux at this point is directly related
to the limiting flux and to the value of the standard deviation.

These mathematical properties of Eq.(7) make possible
a graphic determination of parameters for critical flux distri-
bution from experimental data of permeate flux versus water
flux (or TMP) as shown inFig. 4. The mean critical flux,jcrit,
is given by the y value at the intersection between the “flux
versus pressure” curve and the line with a slope which is half
that of the initial membrane permeability (point[2jcrit; jcrit]
in Fig. 4). Now, the difference between the limiting flux and
the flux versus pressure curve at an abscissajcrit allows the

F crit-
i l
r

0→0 Rm (1/(cdf(0))− 1

uch a relationship can be used to determine the initial r
ance observable inFig. 3b from the value of cdf(0) present
n Fig. 1b.

In contrast, for greater water flux, the limit of Eq.(7) is:

lim
0→∞ j = jlim = jcrit(1 − cdf(0))+ pdf(0)σ2 (10)

his relationship shows that when the probability of hav
eached critical flux tends to one, the flux tends to a limi
alue,j lim.

Furthermore, as can be observed inFig. 3 and derived
rom Eq.(7), there is a common point for a family of curv
ith different critical fluxes and standard deviations, wh
ig. 4. Graphical method to determine parameters of the distribution in
cal flux (mean value,Jcrit, and standard deviation,σ) from experimenta
esults (in dashed line) of permeate flux vs. water flux.
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value of the standard deviation to be determined according
to Eq.(11) (points and in Fig. 4).

This method based on the DCF model can be used to de-
termine the mean critical flux and standard deviation from the
steady state flux versus pressure plot, if limiting flux is exper-
imentally reachable and if the initial pure water permeability
has been measured.

3. Comparison of the DCF model to experimental
results

The DCF model is here applied to describe filtration of
latex suspensions. Parameters for critical flux distribution
are deduced from experiment according to the procedure de-
scribed in Section2.4 and are further compared to experi-
mentally obtained critical flux values.

3.1. Material and methods

Filtration experiments were run according to a procedure
based on controlled alternating increasing and decreasing
pressure steps with the measurements of the steady state flux
[5,11]. The steady state flux, automatically detected by the
experimental system, has always been measured after filtra-
tion periods longer than 30 min. It allows determination of
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Fig. 5. Permeate flux vs. trans-membrane pressure for three different cross-
flow velocities (0.3, 0.6 and 1 m s−1 for (a), (b) and (c), respectively). Sym-
bols represent experimental value for latex filtration and bold line DCF
model. The dashed line represents the membrane half-permeability.

permeate flux versus TMP) as there is no sharp transition
from the Darcy regime to the pressure independent regime.
Determining a weak critical flux by determining the point for
which there is a deviation from linearity[3] could be very
subjective.

In order to have an accurate critical flux measurement,
each steady state flux measurement has been followed by a
decrease in applied pressure in order to determine the re-
versibility [5]. This procedure allows a rigorous determina-
tion of the critical flux above which irreversible fouling oc-
curs.Table 1summarizes the results for critical flux obtained
with this pressure step method[11]. These results show an
oth the classical “steady state” permeate flux versus t
embrane pressure” curve and the fouling reversibilit
ach step. Such experiments have been performed with
uspensions (stabilized by charged polyelectrolytes) w
article size of 106 nm in diameter. Such suspensions
een achieved by dilution in distilled water with a constan

ex concentration of 0.7 g/L (which is equivalent to a volu
raction of 5.10−4) both without salt added and with additi
f various amounts of KCl. When KCl is added (at 10−3 and
0−2 M), the total electrolyte concentration is always well

ow the critical coagulation concentration (c.c.c.) which
een experimentally determined at between 0.1 and 0

n KCl (by observation of settling in a glass cylinder). T
ddition of salt to some extent controls the repulsive inte

ions between particles without having inter-particle coa
ation in the dilute suspension. The membrane used for
ltrations was M2 Carbosep (Orelis, France) with a mo
lar weight cutoff of 15 kDa. Different cross-flow velocit
ave been used between 0.3 and 1.3 m s−1 corresponding t
eynolds numbers of 1800 and 7800, respectively. Fu
ults and details on filtration rig and protocols are detaile
5] and[11].

.2. Experimental filtration results

In Fig. 5 is plotted the increase in steady state perm
ux versus trans-membrane pressure (with no salt ad
or various cross-flow velocities. These experiments sho
xpected increase in permeate flux when increasing c
ow velocity. But, no easy and unequivocal observatio
ossible for the strong critical fluxes in these figures (ste
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Table 1
Critical flux values (×10−6 m s−1) experimentally determined with an al-
ternative increasing and decreasing pressure step for different cross-flow
velocities,u (m s−1), and ionic strength,I, resulting from KCl addition[16]

Critical flux (×10−6 m s−1)

0.3 m s−1 0.6 m s−1 0.8 m s−1 1.0 m s−1 1.3 m s−1

No salt added 8.9 13 – 19.3 –
I = 10−3 M 8.6 10.1 14 – –
I = 10−2 М – 8.4 – 14.4 18.1

increase in critical flux with the cross-flow velocity and a de-
crease in critical flux when adding salt. These experiments
underline the importance of surface interactions on the crit-
ical flux; the critical flux is higher when repulsive surface
interactions (stability) are larger as shown in[2]. The critical
flux concept which has been theoretically explained by the
presence of colloidal surface interactions[2] therefore seems
suited to the description of such a system.

3.3. Filtration interpretation through the DCF model

The DCF model has been applied to the experiments
shown in Fig. 5. The graphic method detailed in sec-
tion 2.4 can be used to determine the distribution param-
eters as plotted inFig. 5b. The intercept with the mem-
brane half-permeability line (dashed line) gives the value of
mean critical flux at around 2.4× 10−5 m s−1. The value of
σ/

√
2π can then be determined as 6.5× 10−6 m s−1 which

then gives a standard deviation for the distribution,σ, of
1.6× 10−5 m s−1. With the same model, experimental results
have been used to find the mean critical flux and the standard
deviation by a classical least square method. Parameters re-
sulting from this numerical optimisation applied to each ex-
periment are presented inTable 2. We can note that graphical
and numerical methods give similar results. The agreement
b nsid-
e ce
v -
v t
c loc-

Table 2
Value of mean critical flux,Jcrit, and its standard deviation,σ, (×10−6 m/s)
used to fit latex filtration experiments with DCF model

Critical flux (×10−6 m s−1)

0.3 m s−1 0.6 m s−1 0.8 m s−1 1.0 m s−1 1.3 m s−1

No salt added
Jcrit 13.6 23.3 – 34.1 –
σ 8.21 15.4 – 22.4 –

I = 10−3 M
Jcrit 10 15 19 – –
σ 5.1 11.6 9.7 – –

I = 10−2 М
Jcrit – 12.7 – 18.8 26
σ – 13.5 – 8.3 13.5

Fig. 6. Deposit hydraulic resistance versus transmembrane pressure. Sym-
bols represent experimental values for latex ultrafiltration and bold lines the
DCF model.

ity, one notes an increase in the mean value of critical flux
and a distribution which becomes larger. The mean critical
flux is multiplied by 2.5 when the cross flow is increased by a
factor 3.3 and the standard deviation follows a similar trend.

An explanation for the large distribution in critical flux
used for modelling could come, in this paper, from a dis-
tribution in the membrane permeability as presented in the

F imental data presented inFigs. 5 and 6with the DCF model. Mean critical flux and
s

etween models and experiments is very good when co
ring both the permeate flux (Fig. 5) and the deposit resistan
ariations as seen inFig. 6. The distributions in critical flux in
olved in the fitting are plotted inFig. 7for the three differen
ross-flow velocities. When increasing the cross-flow ve

ig. 7. Normal distribution for critical flux used for the fitting of exper
tandard deviations are given inTable 2.
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Fig. 8. SEM photograph of a membrane after fouling with a latex suspension. A thin membrane layer (white zone) corresponds to a thick deposit (white vertical
bar). The local heterogeneity in porosity can be at the origin of critical flux distributions.

photograph (Fig. 8) showing that the deposit thickness is in-
versely correlated to membrane skin thickness. Variations in
local permeability could then be a possible physical cause for
the distribution of critical flux. However, distribution in size
or charge of latex particles could also lead to a distribution
in stability: the latex suspension exhibited a size distribution
centred on 118 nm with a standard deviation of 20 nm when
the size analysis (Zetasizer 4, Malvern Inst., UK) was run
monomodally (Gaussian distribution). More generally when
using the DCF model, numerous sources of distributions can
be proposed and some of them are discussed in Section4.1.

3.4. Comparison of DCF parameters and experimental
critical flux

Mean critical flux (Table 2) determined with the DCF
model can be compared to results obtained from the experi-
mental determination of critical flux as presented in Section
3.2(Table 1). A direct comparison (Fig. 9a)) of experimental
critical flux and mean critical flux shows that the experimental
critical flux is always lower than the mean critical flux. This
gap could be explained by considering that the mean value
of critical flux in the distribution corresponds to a probability
of 1/2 for reaching critical flux. It could be thought that the
experimental detection of critical flux occurs for a probability
l flux
l

the
e
s nd
( lue
o ion,
j dis-
t ld
m the
p ical
fl an
0 r-
i u-
l
A d de-
t ach-

ing the critical flux of around 0.25 and 0.3. This means that
most probably, fouling has already started over some areas
of the membrane when we can detect it. This is probably due
to the sensitivity of the flux measurements, which measure
the average flux over the whole membrane surface, and can-
not then detect minute changes in local flux, due to the first
irreversible fouling: In line with this remark, the larger the
membrane surface, the more difficult the true critical flux will
be to determine. On the other hand, the larger the membrane
area of the test equipment the more realistic the measured
critical flux will be. However, as discussed later on, some of
the reasons that the critical conditions are distributed around

Fig. 9. Comparison of the experimental value of critical flux (by a pressure
step method[5]) and (a) the mean value of critical flux obtained by the
modelling or (b) the mean value minus half of the standard deviation.
ower than 1/2 then corresponding to values of permeate
ower than the mean value of distributed critical flux.

Bearing this in mind, one can seek a link between
xperimental critical flux and the mean value,jcrit, and its
tandard deviation,σ. A rather good agreement is fou
Fig. 9b) between the experimental critical flux and the va
f the mean critical flux minus half the standard deviat

crit − (σ/2). This last value corresponds to a cumulative
ribution function, Eq.(2), with a value of 0.3. This cou
ean that critical flux is experimentally detected when
robability of having a permeate flux larger than the crit
ux (i.e. the probability of reaching critical flux) is larger th
.3. This is illustrated inFig. 10where the value of the expe

mental critical flux (vertical line) is compared to the cum
ative distribution function obtained by DCF model (Fig. 7).
gain, it can be seen that the pressure stepping metho

ects a value, which corresponds to the probability of re
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Fig. 10. Position of experimental critical flux (vertical lines) with regard
to critical flux distribution deduced from DCF model application (Fig. 7).
The experimental detection of the critical flux corresponds for this set of
experiments to a probability of having reached the critical value of around
0.25–0.3 (field shading).

a mean value arise from hydrodynamics and from membrane
geometries: these parameters, whose exact influence on the
distribution is not yet clear, cannot be controlled in such a
way that a lab test cell and an industrial plant give the same
value for the distribution in critical condition. Hence, there
is a risk of significant differences in the extent of fouling
between lab tests and real life operation.

If confirmed by further experiments, distribution parame-
ters for fouling conditions could then be linked to the effective
critical flux in terms of accumulation reversibility. However,
the relationship could be different for other suspensions or
membrane properties.

4. Discussions and perspectives

Previous results underline the importance of accounting
for the distribution of critical flux (DCF) to interpret filtration
results even with a suspension being a priori homogeneous in
properties. The ability of a mean critical flux and the relative
standard deviation to interpret filtration results and the possi-
bility to link these parameters to the experimental critical flux
suggests an interesting use of this model for membrane foul-
ing characterisation and data extrapolation. In this section,
we investigate the possible origin of DCF. The link between
t es is
b

4
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• A mass balance with classical convective and diffusive
terms to which is added a term for surface interaction be-
tween a colloid and the surface[2].

• A force balance (mechanical) on a particle near the mem-
brane surface[12] which integrates a force induced by
multi-body surface interaction.

• A mass balance with a diffusive term based on an osmotic
pressure for suspensions with a critical volume fraction
(thermodynamic approach)[13] to describe the aggrega-
tion phenomena.

From these approaches, the critical flux can then be simi-
larly seen as the consequence of:

• A critical volume fraction of particles (in a thermodynamic
approach) resulting from a mass balance between convec-
tion and dispersive mass flux and leading to mass “con-
densation”.

• A critical force acting on the particles (in a mechanistic
approach) leading to their aggregation (repulsive interac-
tion between particles overcome by permeation) on the
membrane.

Generally, the critical condition for fouling can always be
reduced to a balance between the convective drag force on the
particle (link to the initial flux,j0), Fdrag and the dispersive
forcesFdisp as follows:

j )

W bu-
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he DCF model with other existing concepts and theori
riefly discussed.

.1. Physical basis for distribution of critical flux (DCF)

First, physical causes for the DCF are examined to dis
he theoretical meaning of the model. DCF due to tan
ial hydrodynamics through the development of the boun
ayer has already been investigated[10] and is not include
n this section.

The existence of a critical flux (which represents a cri
ouling condition in cross-flow filtration) can be shown fro
odelling based on very different kinds of approaches:
0 < jcrit ⇒ Fdrag < Fdisp ⇒ no deposit formation (12

hen dealing with critical flux, one can think that a distri
ion of both drag force (or relative particle/solvent veloc
nd dispersive force (or critical velocity) can occur near
embrane surface. The distribution of drag force can b

esult of:

A distribution in relative particle/solvent velocity near
surface due to multi-body hydrodynamic or colloidal
teractions.
A distribution in solvent velocity (local permeate flu
along the membrane surface because of heterogene
pore shape or size or in membrane skin thickness.

The possible causes for distribution in these diffe
arameters (investigated in next section) are sketch
ig. 11.

.1.1. Distribution in particle/fluid velocity
Particle velocity distributions caused by multi-body

rodynamic interactions have been studied by numerica
lation [14–15]. As an example, the fluctuation of veloc
round a mean value during settling of a concentrated
ension follows a Gaussian distribution[14]. The fluctuation
an then be considered as a “diffusion-like” motion eve
he causes for the distribution are purely hydrodynam
ature. By analogy with settling (particles moving in an
obile fluid), this kind of distribution can also take place
filtration process under the form of a distribution in rela
article/fluid velocity of (and then drag force on) a part
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Fig. 11. Various possible origins for fluctuations in the drag force and dispersive force balance on a particle near a membrane surface.

immobilised near a membrane surface and dragged along in
the permeate flow. One can think that shear induced diffu-
sion, colloidal interaction induced diffusion or lateral migra-
tion could lead to distributions in particle velocity in the same
way. In the domain of granular flow (as for example in powder
flow) where a large number of small particles are arranged
in a random way, particle velocity fluctuation was defined
by Savage and Jeffrey in 1981[15] by the term “granular
temperature” which quantifies the random motion of parti-
cles around the mean velocity. The intensity of distribution
used later in this paper could then be linked to the concept of
granular temperature and then associated to the dense phase
kinetic theory used for the description of the granular flow of
particles.

4.1.2. Distribution in permeate velocity
Distributions in solvent velocity can also be responsible

for distribution in the radial drag force applied to a parti-
cle near the membrane surface. It can be the consequence
of heterogeneity of the porous wall. These kinds of hetero-
geneity have naturally been assumed to be at the origin of
a weak form of critical flux[3,7]. As an example,Fig. 8
presents the scanning electron microscope image of a mem-
brane after a latex filtration experiment. Strong changes can
be seen in the thickness of the membrane skin (white zone
i ayer
t bility
a e lo-
c e.
A ges
i f the
fi re-
c in
w hich
i main
o he-
n cking
a dis-

tributions of solvent velocity and then to meet locally the
critical conditions for a deposit to form near the membrane
surface.

4.1.3. Distribution in critical dispersive velocity (or flux)
Distributions of dispersive critical velocity (or flux) can

also occur because of a distribution in surface interaction be-
tween the particle and the membrane surface. Local changes
in surface charge, in particle size or in roughness can lead
to different dispersive forces. As an example, the latex par-
ticles used in this work exhibit a size distribution centred on
118 nm with a standard deviation of 20 nm when size analy-
sis (Zetasizer 4, Malvern Inst., UK) is run in monomodally
(Gaussian distribution). This dispersion in size can lead to a
distribution in drag forces for a given local flux. Critical flux
being closely linked to particle stability[2], the particle size
distribution can also be responsible for part of the distribution
in critical flux observed. The distribution of these properties
in a fluid can then lead to a distribution in critical flux.

4.1.4. Summary
As underlined in the previous section, accounting for dis-

tribution of critical flux seems to be physically justified. These
distributions could be described from different possible phys-
ical causes due to multi-body (hydrodynamic or colloidal)
i . Dis-
t tical
d de-
s e-
m lied
e bal-
a

F

i -
p el-
o rsive
n Fig. 8) which exactly matches a decrease in deposit l
hickness. Areas of membrane surface with high permea
re preferential zones for deposit formation because th
al flux is higher: the critical flux may be locally overcom
porosity heterogeneity inducing important local chan

n permeate flux could also lead to the occurrence o
rst irreversibility for the same mean permeate flux. In a
ent publication, Ognier et al.[16] propose a local change
ater flux due to blockage of the first surface pores, w

nduces an increase in flux through the pores that re
pen when operating at constant flux. This kind of p
omenon due to simultaneous mechanisms of pore blo
nd cake formation lead to both spatial and temporal
nteractions and heterogeneous membrane properties
ributions can act both on the drag force and on the cri
ispersive force, which are the two terms of the balance
cribing critical flux in Eq.(12). However, it seems math
atically equivalent to consider these distributions app
ither on the first or on the second member of the force
nce for critical flux:

drag+ 〈f ′
drag〉 = Fdisp ⇔ Fdrag = Fdisp + 〈f ′

disp〉 (13)

.e. with distributions on the drag force〈f ′
drag〉 or on the dis

ersive force〈f ′
disp〉. The theoretical model previously dev

ped in this paper considers distributions on the dispe
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force, i.e., distribution in critical flux. However, this term of
distribution in critical flux accounts more generally for dis-
tributions in critical conditions (both fluctuation terms in Eq.
(13)) and thus always represents the multiple source of het-
erogeneity and the complexity of the system. Using a normal
(or Gaussian) distribution to represent the distribution of crit-
ical flux is justified: this kind of distribution is able to describe
diffusive phenomena (based on stochastic process) as well as
distribution velocity induced by hydrodynamic interactions
[14].

4.2. DCF, critical flux and limiting flux

The results presented in this paper show that distributions
in critical flux around a mean critical flux value can explain
the occurrence of gradual fouling hence giving an explana-
tion for the weak form of critical flux.The weak critical flux
may then be considered as the consequence of a distribution
in strong critical flux. Furthermore, as presented in Section
3.4, it seems possible to link the experimental critical flux,
Jcrit, to the parameters of the critical flux distribution,jcrit
andσ; whereσ is the standard deviation which relates the
gap to the strong critical flux concept. Ifσ =0, the strong
form of critical flux applies. Whenσ increases, critical flux
becomes less strong and the weak form is a more suitable
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4.3. DFC and phase transition

The critical flux behaviour can be related to a phase transi-
tion for the matter accumulated at the membrane surface from
a dispersed phase (when mass is accumulated in a concentra-
tion polarisation layer) to a condensed (solid or aggregated)
phase (when deposit takes place). Critical flux is then defined
as process operating conditions leading to the creation on the
membrane of an irreversible deposit. From this definition, the
term critical finds its physical meaning: i.e., being linked to
an irreversible phase transition.

Recent studies in other fields show that phase transitions
are not really critical, i.e. with a very sharp change. Spin-
odal decomposition[17] which leads to an unstable phase is
always preceded by a metastable phase (linked to bimodal
decomposition). In polymer phase separation, experimental
methods provide evidence of microphase separation caused
by chemical polydispersity of the copolymers[18]. In crys-
tallisation, results “suggest pre-nucleation density fluctua-
tions, leading to a metastable phase, play an integral role
in all three classes of crystallisation”[19]. The use of a
distribution in critical flux could be a way to account for
the existence of a metastable phase preceding the spinodal
decomposition when considering the phase transition lead-
ing to the formation of a colloidal deposit on a membrane
i
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oncept to describe the critical fouling behaviour (as ca
een inFig. 3). The weak “experimental” critical flux is the
receded by a low fouling zone which is theoretically
lained via the DCF model as corresponding to the fou
f areas where the critical flux is much lower than its m
alue (existence of zones easier to foul). Furthermore
eak form of critical flux has been defined[3] as the flux fo
hich a deviation from a linear slope of flux–pressure pr

which can be different from the pure water flux line) occ
t can be seen that when accounting for the distributio
ritical flux around a mean value, one obtains an initial
ar variation in “flux versus pressure” differing slightly fro

hat of the water slope. The DCF model then shows its ab
o interpret experiments for which the weak form of criti
ux was initially developed. Studies using the DCF mo
o interpret weak-form critical flux data have to be contin
efore any general conclusions can be drawn as to the im
f critical flux distribution on critical fouling behaviour.

Furthermore, within this model, the limiting flux is d
ned as the permeate flux for which the probability of hav
eached critical flux is equal to one: there is no probabili
ave the membrane working in sub-critical conditions (
ithout multi-layer deposit). When the initial flux of a run
bove the critical flux, the final permeate flux at steady

s assumed to be equal to the critical value. The limiting
s then linked to an integral of the critical flux distributi
iving an expected value of critical flux on the membr
urface. At limiting flux, the overall membrane surface
hen be considered as covered by a multi-layer deposit, w
ncreases in thickness as soon as the pressure is increa
nterface.

.4. Application of DCF model to the gel theory

Formation of a gel layer could be considered as on
hese phase transitions. This analogy has been unde
y a model[13] for the description of gel and deposit f
ation from the concentration polarisation where crit

ux defines both these transitions. The DCF model de
ped in this paper could then describe the formatio
gel with heterogeneous properties. As a first confi

ion of this assumption, the DCF model has been ap
o the description of bovine serum albumin (BSA) ultra
ration [20]. Prior to these ultrafiltration experiments,
embrane was fouled using the BSA solution, in suc
ay that adsorption during the UF run could be igno

n the same way as when considering latex filtration,
urve of steady state flux versus TMP can be fully depi
Fig. 12) by the distribution parameters with, by analog
ean critical flux for gel,Jcrit, and its standard deviatio

Table 3).

able 3
alue of mean critical flux,Jcrit, and its standard deviation,σ, (×10−6 m s−1)
sed to fit BSA filtration experiments with DCF model

Critical flux (×10−6 m s−1)

Re= 500 Re= 1000 Re= 2000

crit 2.7 4.0 6.0
4.5 4.8 3.7
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Fig. 12. Application of FCFC model to BSA filtration[20]. DCF model
(line) allows a very good description of flux–pressure profile (symbols) for
various hydrodynamic conditions.

4.5. DCF and fouling complexity

Fouling is a very complex problem. Its complexity is
mainly due to the fouling phenomena themselves which deal
with high concentration suspensions at a membrane inter-
face which have heterogeneous properties (leading to hy-
drodynamics, filtration and cross-flow velocity, and transfer,
mass accumulation and retention, with a highly non-ideal
behaviour). When examining the possible source for critical
flux distributions in Section4.1, it could be wondered if a
“direct” model of such complexities is still possible. Using a
global distribution covering all sources of complexity could
then be a fair and more realistic way to describe fouling. The
use of a Gaussian seems well suited to fouling mechanisms
where dispersive forces act as diffusion-like motion in this
first approach. Furthermore, in this paper we only account for
distributions of critical flux and their consequences on steady
state filtration. One could think, in a same way, accounting
for distributions of critical flux over time to describe transient
phenomena in filtration as the permeate flux drift (Pseudo
steady state).

5. Conclusions
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results of cross-flow filtration for latexes or BSA suspensions,
the model shows its ability to fully describe experiments with
only the two distribution parameters. Furthermore, the exper-
imental critical flux obtained with alternating positive and
negative pressure steps seems correlated to the mean critical
flux and the standard deviation. Possible explanations for the
critical flux distribution in these experiments are supported
by a distribution in membrane properties observed on a scan-
ning electron micrograph.

The DCF (distributions of critical flux) model account-
ing for a distribution in critical flux can be useful to inter-
pret cross-flow filtration experiments, to investigate the effect
of suspension properties or membrane materials on fouling
and to extrapolate filtration data. The distribution parameters
which are the standard deviation and the mean value of crit-
ical flux could become a way to depict the effect of critical
flux in a “real world” system.

Appendix A. Appendix

Full calculation of the excepted value of critical flux de-
fined by Eq.(5) in the text is based on the following relation-
ship. The integration of the product of the probability density
function with the flux can be written in two terms as:
∫

T o the
s
∫

E
u ve
d

The consideration of fouling complexity (integrating m
iple sources of polydispersity or heterogeneity) allows a
ood description of flux-pressure profiles for various

oidal suspensions when fouling is controlled by superfi
echanisms. The permeate flux and its variation with T
re linked to a distribution function, that can be easily
rammed on a spreadsheet. A graphic method is also
osed to determine the function parameters (mean cr
ux and standard deviation) from the plot of permeate
ersus trans-membrane pressure.

Considering critical flux distribution allows strong a
eak forms of critical flux to be described, then givin
hysical interpretation of the often observed weak form

he consequence on global filtration flux of a distributio
trong form of critical flux. When challenged to experime
j0

0
pdf(j)jdj =

∫ j0

0
pdf(j)(j − jcrit)dj + jcrit(cdf(j0)

− cdf(0)) (14)

he first term of the preceding equation can be related t
tandard deviation as follows:

j0

0
pdf(j)(j − jcrit)dj = −σ2(pdf(j0) − pdf(0)) (15)

q.(5) for excepted value can then be rewritten in Eq.(6) by
sing Eqs.(14)and(15)and the definition of the cumulati
istribution function in Eq.(2).

Nomenclature

cdf cumulative distribution function
D diffusion coefficient (m2 s)
E function for the excepted value (m s−1)
j permeate flux (from modelling) (m s−1)
J permeate flux (from experiment) (m s−1)
k mass transfer coefficient (m s−1)
L membrane length (m)
p probability
pdf probability density function (m−1 s)
R hydraulic resistance (m−1)
TMP trans-membrane pressure (Pa)
z axial length along the membrane (m)
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Greek letters
δ boundary layer thickness (m)
σ standard deviation (m s−1)

Subscripts
c cake
cf fouling conditions limited by critical flux
crit critical
lim limiting
m membrane
nf no fouling conditions
ul unlimited fouling conditions
0 water
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